Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400195, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308410

RESUMO

All-solid-state batteries employing solid electrolytes (SEs) have received widespread attention due to their high safety. Recently, lithium halides are intensively investigated as promising SEs while their sodium counterparts are less studied. Herein, a new sodium-ion conductor with a chemical formula of Na2.5 Cr0.5 Zr0.5 Cl6 is reported, which exhibits high room temperature ionic conductivity of 0.1 mS cm-1 with low migration energy barrier of ≈0.41 eV. Na2.5 Cr0.5 Zr0.5 Cl6 has a Fm-3m structure with 41.67 mol.% of cationic vacancies owing to the occupation of Cr (8.33 mol.%) and Zr (8.33 mol.%) ions at Na sites. Supercell calculations show that the lowest columbic energy configuration has Cr/Zr/V (where V is the vacancy) clusters in the structure. Nonetheless, the clusters have mixed effects on the sodium ion conduction pathway, based on the Bond Valence Energy Landscape calculation. A global 3D Na-ion transport percolation network can be revealed in the lowest energy supercell. Effective pathways are connected through the NaCl6 and VCl6 nodes. Besides, Raman spectroscopy and 23 Na solid-state nuclear magnetic resonance spectroscopy further prove the tunable structure of the SEs with different Cr to Zr ratios. The optimization between the concentration of Na+ and vacancies is crucial to create an improved network of Na+ diffusion channels.

2.
Nat Commun ; 15(1): 1481, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368426

RESUMO

Stable solid electrolytes are essential to high-safety and high-energy-density lithium batteries, especially for applications with high-voltage cathodes. In such conditions, solid electrolytes may experience severe oxidation, decomposition, and deactivation during charging at high voltages, leading to inadequate cycling performance and even cell failure. Here, we address the high-voltage limitation of halide solid electrolytes by introducing local lattice distortion to confine the distribution of Cl-, which effectively curbs kinetics of their oxidation. The confinement is realized by substituting In with multiple elements in Li3InCl6 to give a high-entropy Li2.75Y0.16Er0.16Yb0.16In0.25Zr0.25Cl6. Meanwhile, the lattice distortion promotes longer Li-Cl bonds, facilitating favorable activation of Li+. Our results show that this high-entropy halide electrolyte boosts the cycle stability of all-solid-state battery by 250% improvement over 500 cycles. In particular, the cell provides a higher discharge capacity of 185 mAh g-1 by increasing the charge cut-off voltage to 4.6 V at a small current rate of 0.2 C, which is more challenging to electrolytes|cathode stability. These findings deepen our understanding of high-entropy materials, advancing their use in energy-related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...